Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

De-Long Shen, ${ }^{\text {a }} \mathrm{Qi}$-Sun Gong, ${ }^{\text {a }}$ Cheng-Xia Tan, ${ }^{\text {a }}{ }^{*}$ Zhi-Min Jin, ${ }^{\text {b }}$ Jian-Quan Weng ${ }^{\text {a }}$ and $\mathrm{Na}-\mathrm{Bo}$ Sun ${ }^{\text {a }}$
${ }^{\text {a }}$ College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and ${ }^{\text {b }}$ The College of Medical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China

Correspondence e-mail:
tanchengxia@zjut.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.050$
$w R$ factor $=0.173$
Data-to-parameter ratio $=16.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(4,6-Dimethoxypyrimidin-2-yloxy)-6-fluoroN -(3-methylpyridyl)benzylamine

In the title compound, $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{FN}_{4} \mathrm{O}_{3}$, the two heterocyclic ring substituents lie on the same side of the central benzene ring.

Comment

Pyrimidinyloxybenzylamine derivatives have very high weedcontrol activity: they are highly efficient with low toxicity, and biodegradable, safe and environmentally friendly agrochemicals (Lu et al., 2001). As part of a study of their structureactivity relationship (SAR), the title compound, (I), that was a product of condensation reactions of 4,6-dimethyloxy-2methylsulfonylpyrimidine, 2-amino-3-methylpyridine and 2-fluoro-6-hydroxybenzaldehyde, was investigated.

(I)

In (I), the two heterocyclic rings lie on the same side of the benzene ring (Fig. 1); the dihedral angle between the two nitrogen-containing rings is $85.67(10)^{\circ}$. This conformation allows the formation of a centrosymmetric dimer mediated by a pair of $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 1).

Experimental

2-Amino-3-methylpyridine ($0.54 \mathrm{~g}, 5 \mathrm{mmol}$) was added dropwise to a methanol solution of 2-fluoro-6-hydroxybenzaldehyde $(0.7 \mathrm{~g}$, $5 \mathrm{mmol})$. At room temperature, $\mathrm{NaBH}_{4}(0.34 \mathrm{~g})$ was added with stirring to give a yellow precipitate. After extraction and distillation, and drying in vacuo, the product was added to a flask containing a tetrahydrofuran solution (25 ml) of 4,6-dimethyloxy-2-methylsulfonylpyrimidine ($0.98 \mathrm{~g}, 4.5 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.17 \mathrm{~g})$ and the mixture was refluxed for 5 h . After filtration, the liquor was evaporated under vacuum to give a solid (1.38 g , yield 83%), which was recrystallized from methanol and petroleum ether (3:1) to give colorless blocks (m.p. 359-360 K).

Received 18 May 2005 Accepted 20 June 2005 Online 24 June 2005

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{FN}_{4} \mathrm{O}_{3}$
$M_{r}=370.38$
Triclinic, $P \overline{1}$
$a=8.8490$ (10) \AA
$b=10.5810$ (10) \AA
$c=11.3773(8) \AA$
$\alpha=113.4470(10)^{\circ}$
$\beta=98.8520(10)^{\circ}$
$\gamma=106.364$ (2) ${ }^{\circ}$
$V=893.89(15) \AA^{3}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.940, T_{\text {max }}=0.978$
6292 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.173$
$S=1.06$
3991 reflections
249 parameters
H atoms treated by a mixture of independent and constrained refinement
$Z=2$
$D_{x}=1.376 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3528
reflections
$\theta=3.5-27.5^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=295$ (1) K
Block, colorless
$0.42 \times 0.38 \times 0.22 \mathrm{~mm}$
3991 independent reflections
2983 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-11 \rightarrow 11$
$k=-12 \rightarrow 13$
$l=-14 \rightarrow 14$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1093 P)^{2}\right.$
$+0.0797 P]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.43 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\min }=-0.33 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.050 (8)

Table 1
Hydrogen-bond geometry ($\left(\AA{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} N 1 \cdots \mathrm{~N}^{\mathrm{i}}$	$0.89(2)$	$2.56(2)$	$3.355(2)$	$149(2)$

Symmetry code: (i) $-x,-y,-z$.
The H atom attached to atom N 1 was located in a difference Fourier map and refined isotropically. Other H atoms were placed in calculated positions and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.98$ (aromatic), 0.97 (methylene) or $0.96 \AA$ (methyl). $U_{\text {iso }}(\mathrm{H})$ values were set at $1.2 U_{\text {eq }}(\mathrm{C})$ (aromatic and methylene H) or $1.5 U_{\text {eq }}(\mathrm{C})$ (methyl H).

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/

Figure 1
The structure of (I), shown with 40% probability displacement ellipsoids.

MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CrystalStructure; software used to prepare material for publication: CrystalStructure.

The authors are grateful for support from the Education Bureau Foundation of Zhejiang Province (No. 20030145).

References

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Lu, L., Chen, J., Wu, J., Ling, W., Mao, L. S., Li, M. Z., Cai, X., Peng, W. L., Wu, Y., Wu, S. G., Wang, H. J., Wang, G. C., Cui, H., Han, S. D., Qiu, W. L. \& Wang, Y. H. (2001). Eur. Patent No. 1327629.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
Rigaku/MSC (2004). CrystalStructure 3.6.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

